Information: Math from pre-algebra through calculus. Includes: complete the square, direct/indirect variation, number of solutions, midpoint, prime numbers, Pythagorean theorem, quadratic formula, slope, distance, vertex, area, volume, surface area, y intercept, Fibonacci sequence, circumference, average, simplified square roots, proportions, system of equations, distance of point to line, types of quadrilateral



   Menu 1
      Unit Circle
      DEG2RAD
      RAD2DEG
      Trig Conv
      LAWS
      
   Menu 2
      Formulas
      Pythagorean
      Area of a Triang
      Quadratic
      Distance
      
   Menu 3
      Law of cosines
      
Law of sines
      
      
      
      
   Menu 4
      
      
      
      
      
      
   Menu 5
      ClrHome
      Connected
      DelVar
      Disp
      Disp " "
      
   Menu 6
      End
      Float
      fnInt
      Full
      func
      
   Menu 7
      Goto
      If; Then; Else
      Input
      Lbl
      Menu
      
   Menu 8
      Normal
      Pause
      RectGC
      Sequential
      Str#
      
Program PRE-CALC
Author Kevin Cottingham (kcottingham24@yahoo.com)
Program PRECALC (8188 bytes on TI-83+)

1. ClrHome
2. Normal
3. Float
4. Real
5. CoordOn
6. AxesOn
7. RectGC
8. 1->Xres
9. Func
10. Lbl ZZ
11. 1->Xres
12. Func
13. RectGC
14. CoordOn
15. AxesOn
16. GridOff
17. Normal
18. Float
19. Real
20. Connected
21. Seqential
22. Full
23. ClrHome
24. Menu("Pre-Calc","Unit Circle...",AA,"DEG2RAD...",BB,"RAD2DEG",CC,"Trig Conv...",DD," LAWS...",EE,"MORE...",GG,"EXIT",00)
25. ClrHome
26. Lbl H8      Pythagorean
27. ClrHome
28. Menu("a²+b²=c²","Find a",H9,"Find b",H0,"Find c",HC,"Menu...",ZZ
29. Lbl H9      Find a
30. ClrHome
31. Disp "a²+b²=c²
32. Disp " "
33. Input "b=",B
34. Input "c=",C
35. B²->B
36. C²->C
37. C-B->A
38. √(A)->A
39. Disp "a is..."
40. Disp A
41. Pause
42. ClrHome
43. Goto H8      Pythagorean
44. Lbl H0      Find b
45. ClrHome
46. Disp "a²+b²=c²"
47. Disp " "
48. Input "a=",A
49. Input "c=",C
50. A²->A
51. C²->C
52. C-A->B
53. √(B)->B
54. Disp "b is..."
55. Disp B
56. Pause
57. ClrHome
58. Goto H8      Pythagorean
59. Lbl HC      Find C
60. ClrHome
61. Disp "a²+b²=c²"
62. Disp " "
63. Input "a=",A
64. Input "b=",B
65. A²->A
66. B²->B
67. A+B->C
68. √(C)->C
69. Disp "c is..."
70. Disp C
71. Pause
72. ClrHome
73. Goto H8      Pythagorean
74. Lbl GG      More
75. ClrHome
76. Menu("Pre-Calc","Formulas...",HH,"Pythagorean...",H8,"BACK...",II
77. ClrHome
78. Lbl H2      Quadratic
79. ClrHome
80. Radian
81. Float
82. Disp "0=ax²+bx+c"
83. Disp "a/=0"
84. Disp " "
85. Input "a=",A
86. Input "b=",B
87. Input "c=",C
88. (-B+√(B²-4AC))/(2A)->Y
89. (-B-√(B²-4AC))/(2A)->Z
90. Disp "x is...",Y
91. Disp Z
92. Pause
93. ClrHome
94. Goto HH      Formulas
95. Lbl HH      Formulas
96. ClrHome
97. Menu("Other Formulas","Area of a Triang",H1,"Quadratic",H2,"Distance",H3,"Midpoint", H4,"Slope",H5,"More...",AH,"MENU...",ZZ
98. Lbl AH      More
99. Menu("More Formulas","Discriminate",H6,"BACK...",HH,"MENU...",ZZ
100. Lbl H6      Discriminate
101. Menu("Discriminate","Formula",HA,"Info",HB,"MENU...",ZZ
102. Lbl HA      Formula
103. ClrHome
104. Normal
105. Float
106. Radian
107. Disp "b²-4ac=D,a/=0"
108. Disp " "
109. Input "a=",A
110. Input "b=",B
111. Input "c=",C
112. B²-4AC->X
113. Disp "Discriminant is..."
114. Disp X
115. Pause
116. Goto HH      Back
117. Lbl HB      Info
118. ClrHome
119. Disp "If b²-4ac>0"
120. Disp " "
121. Disp " Equation has"
122. Disp " two distinct"
123. Disp " real roots."
124. Pause
125. ClrHome
126. Disp "If b²-4ac=0"
127. Disp " "
128. Disp " Equation has"
129. Disp " exactly one"
130. Disp " root."
131. Pause
132. ClrHome
133. Disp "If b²-4ac<0"
134. Disp " "
135. Disp " Equation has"
136. Disp " no real root."
137. Pause
138. ClrHome
139. Goto HH      Back
140. ClrHome
141. Lbl H5      Slope
142. ClrHome
143. Normal
144. Float
145. Radian
146. Input "X1=",A
147. Input "Y1=",B
148. Input "X2=",C
149. Input "Y2=",D
150. (D-B)/(C-A)->X
151. Disp " "
152. Disp "Slope is..."
153. Disp X>Fract
154. Pause
155. Radian
156. Goto HH      Back
157. Lbl H4      Midpoint
158. Normal
159. Float
160. Radian
161. ClrHome
162. Input "X1=",A
163. Input "Y1=",B
164. Input "X2=",C
165. Input "Y2=",D
166. (A+C)/2->X
167. (B+D/2->Y
168. Disp " "
169. Disp "Midpoint is..."
170. Disp (X,Y)
171. Pause
172. ClrHome
173. Goto HH
174.
Lbl H3      Distance
175. ClrHome
176. Radian
177. Float
178. Normal
179. Input "X1=",A
180. Input "Y1=",B
181. Input "X2=",C
182. Input "Y2=",D
183. Disp " "
184. √((C-A)²+(D-B)²)->F
185. Disp "Distance is...",F
186. Pause
187. ClrHome
188. Goto HH
189. Lbl H1      Area of a Triang
190. ClrHome
191. Float
192. Degree
193. Disp "A=1/2ab*sinθ"
194. Disp " "
195. Input "a=",A
196. Input "b=",B
197. Output(5,10,"°"
198. Input "m<θ=",θ
199. (1/2)ABsin(θ)->X
200. Disp "Area is...",X
201. Pause
202. Goto HH
203. Lbl E2      
204. ClrHome
205. Menu("Law of cosines","Find Side",E8,"Find Angle",E9,"Menu...",ZZ)
206. ClrHome
207. Lbl E9      Find Angle
208. ClrHome
209. Float
210. Degree
211. Disp "a²=b²+c²-2bccosA"
212. Disp " "
213. Input "a=",A
214. Input "b=",B
215. Input "c=",C
216. A²->A
217. B²+C²->Z
218. 2BC->Y
219. A-Z->A
220. A/-Y->X
221. cos^-1(X)->X
222. Disp "m
223. Pause
224. Goto EE
225. ClrHome
226. Lbl E8      Find Side
227. ClrHome
228. Float
229. Degree
230. Disp "a²=b²+c²-2bccosA"
231. Disp " "
232. Input "b=",B
233. Input "c=",C
234. Output(5,10,"°")
235. Input "m 236. B²+C²-2BCcos(A)->X
237. √(X)->X
238. Disp "Side a...",X
239. Pause
240. ClrHome
241. Goto EE
242. ClrHome
243. Lbl II      
244. ClrHome
245. Goto ZZ
246. ClrHome
247. Lbl EE      
248. ClrHome
249. Menu("Laws","Law of sin...",E1,"Law of cos...",E2,"Menu..."ZZ)
250. ClrHome
251. Lbl E1      Law of sin
252. ClrHome
253. Menu("Law of sines","Find Side",E3,"Find Angle",E4,"MENU",ZZ
254. Lbl E3      Find Side
255. ClrHome
256. Degree
257. Float
258. Normal
259. Disp "sinA sinB"
260. Disp "---- = ----"
261. Disp " a x"
262. Disp " "
263. Output(5,8,"°")
264. Input "A=",A
265. Output(6,8,"°")
266. Input "B=",B
267. Input "a=",C
268. C*sin(B)/sin(A)->D
269. ClrHome
270. Output(1,1,"sin"
271. Output(1,4,A)
272. Output(1,10,"sin"
273. Output(1,13,B
274. Output(2,1,"------ = ------")
275. Output(3,1,C)
276. Output(3,9," "
277. Output(3,10,D)
278. Output(4,1, "
279. Output(5,1,"A=")
280. Output(5,3,A)
281. Output(5,8,"°")
282. Output(6,1,"B=")
283. Output(6,3,B)
284. Output(6,8,"°")
285. Fix 6
286. Output(8,1,"X="
287. Output(8,3,D
288. Float
289. Output(7,1,"a="
290. Output(7,3,C
291. Pause
292. ClrHome
293. Goto EE
294. ClrHome
295. Lbl E4      Find Angle
296. ClrHome
297. Degree
298. Float
299. Normal
300. Disp "sinA sinX"
301. Disp "---- = ----"
302. Disp " a b"
303. Disp " "
304. Output(5,8,"°")
305. Input "A=",A
306. Input "a=",C
307. Input "b=",D
308. sin((A)*D/C->B
309. sin&sup-1;(B)->B
310. ClrHome
311. Output(1,1,"sin"
312. Output(1,4,A)
313. Output(1,10,"sin"
314. Output(1,13,B)
315. Output(2,1,"------ = ------")
316. Output(3,1,C)
317. Output(3,10,D)
318. Output(4,1," "
319. Output(5,1,"A=")
320. Output(5,3,A)
321. Output(5,8,"°")
322. Output(6,1,"a="
323. Output(6,3,C)
324. Fix 6
325. Output(8,1,"X="
326. Output(8,3,B)
327. Output(8,12,"°")
328. Float
329. Output(7,1,"b="
330. Output(7,3,D)
331. Pause
332. ClrHome
333. Goto EE
334. ClrHome
335. Lbl DD      
336. ClrHome
337. Menu("Trig Conversions","Trig Ident",D1,"Trig Form...",D2,"MENU...",ZZ)
338. Lbl D1      Trig Ident
339. ClrHome
340. Disp "1=cos²θ+sin²θ "
341. Disp "cos²θ=1-sin²θ"
342. Disp "sin²θ=1-cos²θ"
343. Disp " "
344. Disp "1=csc²θ-cot²θ"
345. Disp "csc²θ=1+cot²θ"
346. Disp "
347. Pause
348. ClrHome
349. Disp "1=sec²θ-tan²θ"
350. Disp "tan²θ=secθ-1"
351. Disp "sec²θ=tanθ+1"
352. Pause
353. ClrHome
354. Goto DD
355. Lbl D2      Trig Form
356. Menu("Trig Formulas","Addition...",D3,"Double Angle...",D4,"Half Angle...",D5, "Menu...",ZZ)
357. Lbl DA      
358. ClrHome
359. Disp "sin(u+v)="
360. Disp "sinu*cosv"
361. Disp " +cosu*sinv"
362. Disp " "
363. Disp "sin(u-v)="
364. Disp "sinu*cosv"
365. Disp " -cosu*sinv"
366. Pause
367. ClrHome
368. Goto DD
369. Lbl DB      
370. ClrHome
371. Disp "cos((u+v)=
372. Disp "cosu*cosv"
373. Disp " -sinu*sinv"
374. Disp " "
475. Disp "cosu*cosv"
376. Disp " -sinu*sinv"
377. Disp " "
378. Disp "cos(u-v)=
379. Disp "cosu*cosv"
380. Disp " +sinu*sinv"
381. Pause
382. ClrHome
383. Goto DD
384. Lbl DC      
385. ClrHome
386. Disp "tan(u+v)=
387. Disp "(tanu+tanv)
388. Disp " /(1+tanu*tanv)"
389. Disp " "
390. Disp "tan(u-v)="
391. Disp "(tanu-tanv)"
392. Disp " /(1-tanu*tanv)"
393. Pause
394. ClrHome
395. Goto DD
396. Lbl D4      Double Angle
397. ClrHome
398. Menu("Double Angle",sin2u",DE,"cos2u",DF,"tan2u",DG,"Menu...",ZZ
399. Lbl DE      sin2u
400. ClrHome
401. Disp "sin2u="
402. Disp "2sinu*cosu"
403. Pause
404. ClrHome
405. Goto DD
406. Lbl DF      cos2u
407. ClrHome
408. Disp "cos2u="
409. Disp "cos²u-sin²u"
410. Disp "1-2sin²u"
411. Disp "2cos²u-1"
412. Pause
413. ClrHome
414. Goto DD
415. Lbl DG      tan2u
416. ClrHome
417. Disp "tan2u="
418. Disp "(2tanu)"
419. Disp " /(1-tan²u)"
420. Pause
421. ClrHome
422. Goto DD
423. Lbl D5      
424. ClrHome
425. Menu("Half Angle","sinX/2",DH,"cosX/2",DI,"tanX/2",DJ,"MENU...",ZZ
426. Lbl DH      sinX/2
427. ClrHome
428. Disp "sinX/2="
429. Disp "√((1-cosX)/2)"
430. Pause
431. ClrHome
432. Goto DD
433. Lbl DI      cosX/2
434. ClrHome
435. Disp "cosX/2="
436. Disp "√((1+cosX)/2)"
437. Pause
438. ClrHome
439. Goto DD
440. Lbl DJ      tanX/2
441. ClrHome
442. Disp "tanX/2="
443. Disp "√(1-cosX)"
444. Disp " /√(1+cosX)"
445. Disp " "
446. Disp "(1-cosX)/sinX"
447. Disp " "
448. Disp "sinX/(1+cosX)"
449. Pause
450. ClrHome
451. Goto DD
452.
Lbl AA      
453. Menu("Coord. of Unit C","Radian",A1,"Degree",A2,"Graph",A3,MENU...",ZZ)
454. Lbl A3      Graph
455. FnOff
456. AxesOff
457. CoordOff
458. ZDecimal
459. ClrHome
460. Lbl UC      
461. FnOff
462. ClrHome
463. Normal
464. Float
465. Full
466. Connected
467. AxesOff
468. CoordOff
469. LabelOff
470. ExprOff
471. GridOff
472. ZDecimal
473. Circle(0,0,3)
474. Line(0,3,0,-3)
475. Line(-3,0,3,0)
476. Line(2.1,2.1,-2.1,-2.1)
477. Line(-2.1,2.1,2.1,-2.1)
478. Line(1.2,2.7,-1.2,-2.7)
479. Line(2.7,1.2,-2.7,-1.2)
480. Line(-1.2,2.7,1.2,-2.7)
481. Line(-2.7,1.2,2.7,-1.2)
482. Text(19,67,"1"
483. Text(10,63,"2"
484. Text(6,56,"3"
485. Text(4,46,"4"
486. Text(6,36,"5"
487. Text(11,29,"6"
488. Text(18,24,"7"
489. Text(28,22,"8"
490. Text(38,24,"9"
491. Text(45,29,"0"
492. Text(49,36,"A"
493. Text(52,46,"B"
494. Text(50,55,"C"
495. Text(44,63,"D"
496. Text(37,67,"E"
497. Text(28,70,"F"
498. Text(2,1,"Unit"
499. Text(8,1,"Circle"
500. Text(2,74,"Press"
501. Text(8,80,"Key"
502. Text(48,75,"CLEAR"
503. Text(56,75,"Exit"
504. Line(2.8,-1.6,4.6,-1.6)
505. Line(2.8,-2.4,4.6,-2.4)
506. Line(2.7,-1.7,2.7,-2.3)
507. Line(4.7,-1.7,4.7,-2.3)
508. While 1
509. getKey->X
510. While X=0
511. getKey->X
512. End
513. If X=92:Then:ClrHome:Disp "π/6,30°":Disp " ":Disp "X,cos=√(3)/2":Disp " ": Disp "y,sin=1/2":Pause :Goto UC:Else:
514. If X=93:Then:ClrHome:Disp "π/4,45°":Disp " ":Disp "X,cos=√(2)/2":Disp " ": Disp "y,sin=√(2)/2":Pause :Goto UC:Else
515. If X=94:Then:ClrHome:Disp "π/3,60°":Disp " ":Disp "X,cos=1/2":Disp " ":Disp " y,sin=√(3)/2":Pause :Goto UC:Else
516. If X=82:Then:ClrHome:Disp "π/2,90°":Disp " ":Disp "X,cos=0":Disp " ":Disp " y,sin=1":Pause :Goto UC:Else
517. If X=83:Then:ClrHome:Disp "2π/3,120°":Disp " ":Disp "X,cos=-1/2":Disp " ": Disp "y,sin=sqrt(3)/2":Pause :Goto UC:Else:
518. If X=84:Then:ClrHome:Disp "3π/4,135°":Disp " ":Disp "X,cos=-√(2)/2":Disp " ": Disp "y,sin=√(2)/2":Pause :Goto UC:Else:
519. If X=72:Then:ClrHome:Disp "5π/6,150°":Disp " ":Disp "X,cos=-√(3)/2":Disp " ": Disp "y,sin=1/2":Pause :Goto UC:Else:
520. If X=73:Then:ClrHome:Disp "π,180°":Disp " ":Disp "X,cos=-1":Disp " ":Disp " y,sin=0":Pause :Goto UC:Else:
521. If X=74:Then:ClrHome:Disp "7π/6,210°":Disp " ":Disp "X,cos=-√(3)/2"Disp " ": Disp "y,sin=-1/2":Pause :Goto UC:Else:
522. If X=102:Then:ClrHome:Disp "5π/4,225°":Disp " ":Disp "X,cos=-√(2)/2":Disp " ": Disp "y,sin=-√(2)/2":Pause :Goto UC:Else:
523. If X=41:Then:ClrHome:Disp "4π/3,240°":Disp " ":Disp "X,cos=-1/2":Disp " ":Disp " y,sin=-√(3)/2":Pause :Goto UC:Else:
524. If X=42:Then:ClrHome:Disp "3π/2,270°":Disp " ":Disp "X,cos=0":Disp " ":Disp " y,sin=-1":Pause :Goto UC:Else:
525. If X=43:Then:ClrHome:Disp "5π/3,300°":Disp " ":Disp "X,cos=1/2":Disp " ":Disp " y,sin=-√(3)/2":Pause :Goto UC:Else:
526. If X=51:Then:ClrHome:Disp "7π/4,315°":Disp " ":Disp "X,cos=√(2)/2":Disp " y,sin=-√(2)/2":Pause :Goto UC:Else:
527. If X=52:Then:ClrHome:Disp "11π/6,330°":Disp " ":Disp "X=√(3)/2":Disp " ":Disp "y,sin=-1/2":Pause :Goto UC:Else:
528. If X=53:Then:ClrHome:Disp "0,2π,0degree,360°":Disp " "Disp "X,cos=1":Disp " ": Disp "y,sin=0":Pause :Goto UC:Else:
529. If X=45:Then:ZStandard:RectGC:CoordOn:GridOff:AxesOn:LabelOff:ExprOn:FnOn :Goto AA: ClrHome:
530. Lbl A1      Radian
531. Radian
532. Float
533. ClrHome
534. Input "ENTER RADIAN ",X
535. If X=pi/6:Then:Disp "√(3)/2,1/2":Pause :Goto AA:Else
536. If X=pi/4:Then:Disp "√(2)/2,√(2)/2":Pause :Goto AA:Else
537. If X=pi/3:Then:Disp "1/2,√(3)/2":Pause :Goto AA:Else
538. If X=pi/2:Then:Disp "0,1":Pause :Goto AA:Else
539. If X=2pi/3:Then:Disp "-1/2,√(3)/2":Pause :Goto AA:Else
540. If X=3pi/4:Then:Disp "-√(2)/2,√(2)/2"Pause :Goto AA:Else
541. If X=5pi/6:Then:Disp "-sqrt(3)/2,1/2":Pause :Goto AA:Else
542. If X=pi:Then:Disp "-1,0":Pause :Goto AA:Else
543. If X=7pi/6:Then:Disp "-√(3)/2,-1/2":Pause :Goto AA:Else
544. If X=5Pi/4:Then:Disp "-√(2)/2,-√(2)/2":Pause :Goto AA:Else
545. If X=4pi/3:Then:Disp "-1/2,-√(3)/2":Pause :Goto AA:Else
546. If X=3pi/2:Then:Disp "0,-1":Pause :Goto AA:Else
547. If X=5Pi/3:Then:Disp "1/2,-√(3)/2":Pause :Goto AA:Else
548. If X=7Pi/4:Then:Disp "√(2)/2,-√(2)/2":Pause :Goto AA:Else
549. If X=11Pi/6:Then:Disp "√(3)/2,-1/2":Pause :Goto AA:Else
550. If X=2Pi:Then:Disp "1,0":Pause :Goto AA:Else
551. Goto A1
552. Lbl A2      Degree
553. ClrHome
554. Output(2,4,"°")
555. Degree
556. Float
557. Input "ENTER DEGREE ",Y
558. Ydegree->X
559. If X=30:Then:Disp "√(3)/2,1/2":Pause :Goto AA:Else
560. If X=45:Then:Disp "√(2)/2,√(2)/2":Pause :Goto AA:Else
561. If X=60:Then:Disp "1/2,√(3)/2":Pause :Goto AA:Else
562. If X=90:Then:Disp "0,1":Pause "Goto AA:Else
563. If X=120:Then:Disp "-1/2,√(3)/2":Pause :Goto AA:Else
564. If X=135:Then:Disp "-√(2)/2,√(2)/2":Pause :Goto AA:Else
565. If X=150:Then:Disp "-√(3)/2,1/2":Pause :Goto AA:Else
566. If X=180:Then:Disp "-1,0":Pause "Goto AA:Else
567. If X=210:Then:Disp "-√(3)/2,-1/2":Pause :Goto AA:Else
568. If X=225:Then:Disp "-√(2)/2,-√(2)/2":Pause :Goto AA:Else
569. If X=240:Then:Disp "-1/2,-√(3)/2":Pause :Goto AA:Else
570. If X=270:Then:Disp "0,-1":Pause "Goto AA:Else
571. If X=300:Then:Disp "1/2,-√(3)/2":Pause :Goto AA:Else
572. If X=315:Then:Disp "√(2)/2,-√(2)/2":Pause :Goto AA:Else
573. If X=330:Then:Disp "√(3)/2,-1/2":Pause :Goto AA:Else
574. If X=360:Then:Disp "1,0":Pause :Goto AA:Else
575. Goto A2
576.
Lbl BB
577. Menu("Radian","Exact Value",B1,"π Format",B2,"MENU...",ZZ)
578. Lbl B1      Exact Value
579. ClrHome
580. Radian
581. Float
582. ClrHome
583. Output(2,4,"°")
584. Input "ENTER DEGREE ",X
585. X*(π/180)->B
586. Disp "Radian is ... ",B
587. Pause
588. ClrHome
589. Goto BB
590. Lbl B2      pi Format
591. ClrHome
592. Float
593. Radian
594. Output(2,4,"°")
595. Input "ENTER DEGREE ",Z
596. Zdegree->Y
597. Y/π->X
598. Disp "Radian is ... "
599. Disp "* π to numerator",X>Frac
600. Pause
601. Goto BB
602.
Lbl CC
603. ClrHome
604. Float
605. Input "ENTER RADIAN ",A
606. A*(180/π)->B
607. Disp "Degree is ... ",B
608. Pause
609. Goto ZZ
610. Lbl 00      
611. ClrHome

Reference: TI Calc Basic Commands

ClrHome clears home screen
Connected The Connected command sets all equations to use the usual graph style - a connected line.
DelVar Deletes from memory the contents of variable.
Disp displays text or value specified
Disp " " displays a blank line
End identifies end of For(, If-Then-Else, Repeat, or While loop
Float The Float command makes the calculator display numbers with a "floating decimal point" — only as many digits after the decimal as needed are displayed
fnInt Returns the function integral of expression with respect to variable, between lower and upper, with specified tolerance.
Full The Full command cancels the effects of either Horiz or G-T. Full is usually used either at the beginning and/or ending of a program. It is used at the beginning to ensure that the screen mode is Full, the standard setting.
func Sets function graphing mode.
Goto goes to label specified. Goto requires a line label be implemented as a destination
If; Then; Else Executes commands from Then to Else If condition true: or from Else to End if condition false
Input prompts for value to store to variable. Requires user input through keypad
Lbl creates a label of one or two characters
Menu generates a menu of up to seven items
Normal The Normal command puts the calculator in normal number mode, in which it only uses scientific notation for large enough numbers
Pause The Pause command is used for suspending the execution of a program at a certain point.
RectGC The RectGC ("Rectangular Grid Coordinates") command, affects how the coordinates of a point on the graph screen are displayed. When RectGC is enabled, the coordinates of a point are displayed as (X,Y).
Sequential Puts the calculator into sequential graphing mode (the default). When multiple equations are enabled at the same time, sequential graphing mode means that they will be graphed one after the other
Str# (# is number) String: A sequence of characters is called a string
2197. REFERENCE
   
AREA
Circle
Area enclosed by a circle
   Three (3) different ways to calculate the area of a circle are given below, with a formula for each.
Circle Formulas
   Drexel University School of Education
Standard Mathematical Tables and Formulae
With more than 6,000 entries, CRC Standard Mathematical Tables and Formulae, proceeds to supply important formulas, tables, figures, and descriptions.

Rectangle
Area of a rectangle
Rectangle Formulas
Rectangle Area Formulas
A=LW
   L=3
   W=4
A=L*W   A=3*4=12
A=1/2sqrt(a^2+c^2)(b^2+d^2)   =1/2sqrt(3^2+3^2)(4^2+4^2)=1/2sqrt(9+9)(16+16)=1/2sqrt(18*32)=1/2sqrt(576)=1/2*24=12
A=1/4 (a+c)(b+d)=   [(3+3)*(4+4)]/4=(6*8)/4=48/4=12
Square
Area of a Square
   Two (2) different ways to calculate the area of a square are given below, with a formula for each.
The square is defined as having all sides equal, and its interior angles all right angles (90°). From this it follows that the opposite sides are also parallel.

Trapezoid
Area of a trapezoid
A quadrilateral which has at least one pair of parallel sides

Triangle
Area of a triangle
   Five (5) different ways to calculate the area of a triangle are given below, with a formula for each.

Parallelogram
Area of a parallelogram
A quadrilateral with both pairs of opposite sides parallel.

Rhombus
Area of a rhombus
   Three (3) different ways to calculate the area of a rhombus are given below, with a formula for each.
A quadrilateral with all four sides equal in length.

Polygon
Area of a regular polygon
   Three (3) different ways to calculate the area of a regular polygon are given below, with a formula for each.

VOLUME
Cone
Volume of a cone
Cylinder
Volume enclosed by a cylinder
Pyramid
Volume of a pyramid
Volume of a Pyramid
Pyramid (geometry)
Rectangular Pyramid
A pyramid is a solid figure with a polygonal base and triangular faces that meet at a common point, called the apex. A pyramid is described by the shape of its base.
Prism Rectangular
Sphere
Volume of a sphere
Cube
Volume enclosed by a cube
Prism Right
Volume Formulas
CLEP® MATH TEST PREP
EXAMPLES
SCREENSHOTS
 
picture from AnVisionWebTemplates.com
FREE TUTORIALS © copyright 2000-2013 @ Cadet Career Counseling all rights reserved
"Cadet Career Counseling" helping cadets make exceptional students.
Contact Webmaster at:(navyfalcon) e-mail
Solutions Manual for the GRE Mathematics Subject Test GR0568 (Corrected Version) --Author: Eric Flaten
This manual contains a solution for each of the 66 problems for the ETS’s practice test GR0568, which is a retired GRE mathematics subject test

Student Solutions Manual for Freitag's Mathematics for Elementary School Teachers: A Process Approach, 1s --Author: Freitag

Student Solution Manual for Foundation Mathematics for the Physical Sciences
This Student Solution Manual provides complete solutions to all the odd-numbered problems in Foundation Mathematics for the Physical Sciences. It takes students through each problem step-by-step, so they can clearly see how the solution is reached, and understand any mistakes in their own working.

A Student Solutions Manual for Introduction to Mathematical Statistics and Its Applications, 4th edition
Mathematical Proofs: A Transition to Advanced Mathematics
Creating.Web.Sites.The.Missing.Manual
Build Your Own Web Site The Right Way Using HTML & CSS

Basic mathematics skills
Basic mathematics is what this website will teach you. It is designed for anyone who needs a basic understanding of mathematics concepts and operations. Instruction is carefully sequenced to follow a logical order.

Khan Academy: Over 700 Free Math Instruction Videos
Khan Academy has "over 700 videos covering everything from basic arithmetic and algebra to differential equations, physics, and finance

Introduction to Mathematics and Algebra
Provides a review of basic arithmetic and elementary algebra; includes fractions, decimals, percentages, exponents, radicals, logarithms; exercises in factoring polynomials, linear equations, ratio, proportion, variation, complex numbers and quadratic equations; presents brief introduction to plane figures, geometric construction, and trigonometry.

Pre-Calculus and Intro to Probability
Contains information on the following subjects: straight lines, conic sections, tangents, normals, slopes; introduction to differential and integral calculus; combinations and permutations; and introduction to probability.

Mathematical Formula Handbook pdf
Speigel, M.R., Mathematical Handbook of Formulas and Tables. (Schaum’s Outline Series, McGraw-Hill, 1968). Physical Constants
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
Students and professionals in the fields of mathematics, physics, engineering, and economics will find this reference work invaluable. A classic resource for working with special functions, standard trig, and exponential logarithmic definitions and extensions
Math Handbook of Formulas, Processes and Tricks Geometry
This study guide was prepared to be a companion to most books on the subject of High School Geometry